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We study the attractive fermionic Hubbard model on a honeycomb lattice using determinantal quantum
Monte Carlo simulations. By increasing the interaction strength U �relative to the hopping parameter t� at half
filling and zero temperature, the system undergoes a quantum phase transition at 5.0�Uc / t�5.1 from a
semimetal to a phase displaying simultaneously superfluid behavior and density order. Doping away from half
filling, and increasing the interaction strength at finite but low temperature T, the system always appears to be
a superfluid exhibiting a crossover between a BCS and a molecular regime. These different regimes are
analyzed by studying the spectral function. The formation of pairs and the emergence of phase coherence
throughout the sample are studied as U is increased and T is lowered.
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The recent discovery of graphene layers, i.e., single-atom
thick layers of carbon atoms arranged in a planar honeycomb
structure,1 has attracted considerable attention due to its in-
terest in fundamental physics as well as for potential appli-
cations. The energy-band spectrum shows “conical points”
where the valence and conduction bands are connected, and
the Fermi energy at half filling is located precisely at these
points as only half of the available states are filled. Around
these points, the energy varies proportionally to the modulus
of the wave vector and the excitations �holes or particles� of
the system are equivalent to ultrarelativistic �massless� Dirac
fermions since their dispersion relation is linear.2 Graphene
sheets then allows for table-top experiments on two-
dimensional �2D� field theories with quantum anomalies, al-
lowing us to explore the Klein paradox,3 the anomalous
quantum Hall effect induced by Berry phases4,5 and its cor-
responding modified Landau levels.6

When the fermions are interacting, the peculiar nature of
the Fermi surface �i.e., reduced to a finite number of Dirac
points� leads to special physics at and around half filling. In
a square lattice, the nesting of the Fermi surface generally
leads to ordered phases even for arbitrarily small interaction
strengths. On the contrary, in the honeycomb lattice and with
repulsive interactions, Paiva et al.7 have found a quantum
phase transition �QPT� at half filling between a metallic and
an ordered phase when the interaction strength is increased.
However, since graphene is a weakly interacting system, this
QPT is not accessible experimentally.

It is now known that a hexagonal optical lattice could be
produced with three laser beams.8,9 In a recent work, some of
us have analyzed the possibility of reproducing graphene
physics and of extending it to the interacting regime by cre-
ating a two-dimensional honeycomb optical lattice and load-
ing ultracold spin-1/2 fermionic atoms, such as 6Li, into it.10
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The key advantage is that the relevant experimental param-
eters �e.g., configuration and strength of the optical potential,
interatomic interaction strength tuned via Feshbach reso-
nance� can be accurately controlled while getting rid of the
inherent complexity of a solid. Following this idea, we use
exact quantum Monte Carlo �QMC� simulations to study in-
teracting ultracold fermions loaded into a honeycomb optical
lattice in the absence of any external confinement. We will
focus on the case of attractive interactions as it is accessible
with these numerical techniques and free from the sign prob-
lem at and away from half filling.

In the continuum at zero temperature, as the interacting
fermionic gas is driven from the weak to the strong attractive
coupling limit, there is a crossover from a BCS regime of
weakly bound delocalized pairs to a Bose-Einstein conden-
sate �BEC� of tightly bound pairs �later called molecules for
simplicity�.11–13 At finite but sufficiently low temperature, a
similar BCS-molecule crossover is observed except that, the
system being two dimensional, there is only quasilong-range
order and, consequently, no true condensate but only a su-
perfluid. In this paper, we will study interacting particles on
a lattice, represented by a simple fermionic Hubbard
model.14 Nonetheless, some aspects of the continuum limit,
such as the BCS-BEC crossover, are expected to be repro-
duced in the discrete model. Zhao and Paramekanti15 have
explored the attractive fermionic Hubbard model on a hon-
eycomb lattice using mean-field theory and they found a
QPT between a semimetal and a superfluid at half filling.
Away from half filling, they recovered the crossover already
observed in the continuum limit. Recently, Su et al.16 used
QMC methods to study the BCS-BEC crossover on the hon-
eycomb lattice away from half filling and concluded that it
was similar to the one obtained for the square lattice. In the
present work, we use QMC simulations and large system
sizes to study the pair formation at half filling and accurately
determine the critical value of the coupling strength at which
pairs form. We then study pairing away from half filling by
analyzing several quantities, including spectral functions.

The paper is organized as follows. In Sec. I, we introduce
the model, notations, and the quantities we use to character-
ize the different phases. In Sec. II, we show that our system
at half filling can be related to the repulsive Hubbard model7

and then present complementary results for this case, includ-
ing the QPT point the system crosses to go from a semime-
tallic disordered phase to an ordered one displaying both
superfluid behavior and density wave order. The location of
this QPT point has been accurately determined compared to
previous works and the nature of the weakly interacting
phase before the transition is addressed by analyzing the be-
havior of the spectral function as the interaction strength is
varied. Finally, in Sec. III we study the system doped away
from half filling. The system is clearly shown to exhibit su-
perfluid behavior while the density wave order present at half
filling has been destroyed. We conclude our study by analyz-
ing the formation of pairs and the emergence of global phase
coherence as a function of temperature and interaction
strength.

I. FERMIONIC HUBBARD MODEL

The physics of a system of Nf spin-1/2 fermions, with
attractive two-body interactions and equal spin populations,

filling up a lattice made of N sites is encapsulated in a simple
tight-binding model, namely, the fermionic attractive Hub-
bard model �FAHM�, whose grand-canonical Hamiltonian
operator reads17

H = − t �
�i,j�,�

�f i�
† f j� + f j�

† f i��

− U�
i

�ni↑ − 1/2��ni↓ − 1/2� − ��
i,�

ni�. �1�

Here �i , j� denotes pairs of nearest-neighbor sites on the lat-
tice, �= ↑ ,↓ are the two possible spin states of the fermions,
f i�

† and f i� are the creation and annihilation operators of a
fermion with spin state � at site i, ni�= f i�

† f i� is the corre-
sponding number operator, t is the hopping amplitude be-
tween nearest-neighbor sites, U�0 is the strength of the at-
tractive interaction between fermions with opposite spin
states, and � is the chemical potential whose value fixes the
average total fermionic density �. With the present form of
the interaction term, the system is half filled, i.e., there is on
average one fermion per site ��=Nf /N=1�, when �=0. In
the noninteracting limit U=0, this system is known to be-
have like a semimetal with vanishing density of states at the
Fermi level and its elementary excitations are massless Dirac
fermions that obey the 2D Weyl-Dirac equation.18

The FAHM �Eq. �1�� on a bipartite lattice is particle-hole
symmetric19 and thus adopts the same phases for densities �
and 2−�. It is then sufficient to study the system for densities
��1. This model can also be mapped onto the fermionic
repulsive Hubbard model �FRHM� �Refs. 7 and 14� by per-
forming a particle-hole transformation on only one of the
species. Consequently, the physics of the FAHM at densities
��↑ ,�↓� is equivalent to that of the FRHM at densities �1
−�↑ ,�↓� or ��↑ ,1−�↓� but with a nonzero Zeeman-type term,
−��i�ni↑−ni↓�. Therefore, the two models are identical at
half filling ��=0�. We will use this equivalence in Sec. II
where we concentrate on the half-filled case.

To calculate the equilibrium properties of this model at
finite but low temperatures T, we used the standard determi-
nant quantum Monte Carlo �DQMC� algorithm.20–24 The par-
tition function is expressed as a path integral with the help of
Suzuki-Trotter decomposition ���=0.125�. The interaction
term is decoupled through discrete Hubbard-Stratonovich
�HS� transformation.20 The fermionic degrees of freedom are
traced out analytically and the summation over the HS field
is done stochastically. Metropolis algorithm is used to per-
form local moves which flip the HS variables at a given site
and a given imaginary time. For each data points �tempera-
ture, interaction strength, lattice, and density�, 20 simulations
of different random seeds are performed, each with 1000
warm-up sweeps and 2000 measurement sweeps. Statistical
average of the 20 simulations are reported. The cases under
our consideration �namely, attractive interactions and equal
densities of spin-up and spin-down fermions� are free of the
sign problem23 that used to plague numerical simulations of
fermionic systems. This will allow us to reach the low tem-
peratures needed to study pairing and superfluidity. In the
following, the reciprocal of the thermal energy �also called
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the inverse temperature� is denoted as usual by 	=1 /kBT,
where kB is the Boltzmann constant.

In the DQMC simulations, we have used the honeycomb
lattice depicted in Fig. 1 with periodic boundary conditions.
The primitive vectors a1 and a2 delineate a diamond-shaped
primitive cell of the Bravais lattice which contains two non-
equivalent sites �A and B� separated by AB�= �a1+a2� /3 and
each producing upon tiling a hexagonal sublattice. A finite
honeycomb lattice of side L then contains N=2L2 sites. In
the noninteracting case, the energy levels are given by2,10


��k1,k2� = � t�1 + ei2�k1/L + ei2�k2/L� ,

where k1 ,k2� 	0,1 , . . . ,L−1
. When L is a multiple of three,
there always exist pairs �k1 ,k2� such that 
��k1 ,k2�=0, i.e.,
there are four states �two per spin state� located exactly at the
Fermi level and only two of these states will be occupied if
�=1. This does not happen when L is not a multiple of three.
As a consequence, on small finite-size systems, a small gap
of order 1 /L appears around half filling when L is not a
multiple of three �see Fig. 2�. To avoid confusion between
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FIG. 1. Finite honeycomb lattice of linear dimension L=6. The total number of sites is N=2L2=72.
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FIG. 2. �Color online� Total average density � vs chemical potential � for U / t=0 �top� and U / t=1 �bottom� at 	t=16 and different lattice
sizes L. The top figure is obtained by analytical calculation at U=0. The bottom figure is obtained from numerical data generated by DQMC.
For sizes that are not multiples of three, there is no state at half filling and a small gap appears for small system sizes. There is no such gap
when L is a multiple of three. For sizes that are multiples of three, plateaus appear away from half filling. These plateaus are also finite-size
effects and they disappear when L→
. The dotted line in the top figure is obtained by an exact evaluation of the derivative �� /�� ��=0 in
the noninteracting limit when L→
. The two figures show that the “magic number 3” effect is present even when the interaction strength
U is comparable to the hopping parameter t.
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this gap, which is a finite-size effect and Mott gaps generated
by interactions that are expected to appear in ordered phases,
we used �especially at half-filling� sizes L that are multiples
of three. This limits strongly the sizes that can be studied. In
the most favorable cases, we went up to L=15, that is, N
=450 sites.

In the strong-coupling regime �U� t�, we expect the sys-
tem to form pairs �hereafter called molecules� of fermions
with opposite spins on the same site. These pairs can show
two different ordering phenomena: establishment of a phase
coherence order or of a solid �crystal-type� order. A solid of
pairs would exhibit a density wave typical of a crystal and
would reveal itself through spatial oscillations in the density-
density correlation function,

Dij = �ninj� , �2�

where ni=��ni� is the total number of fermions on site i and
where � · � denotes the quantum statistical average at tempera-
ture T. At half filling and zero temperature, we expect to
observe a phase where alternate sites are empty and where
only the A or the B sublattice is occupied. Such a density
wave is signaled by a structure factor Sdw diverging linearly
with the total number of sites N of the system, where

Sdw =
1

N
�
i,j

�− 1�i+jDij �3�

with the site index i being even on A sites and odd on B sites.
In a Bose condensed phase, the phase coherence between

pairs is signaled by long-range order �or quasilong-range or-
der for a superfluid at finite temperature� in the pair Green’s
function,

Gij
p =

1

2
��i

†� j + �i� j
†� , �4�

where �i
†= f i↑

† f i↓
† creates a pair on site i. In a way similar to

the density correlations, we define a pair structure factor
Ps,

25

Ps =
1

N
�
i,j

Gij
p . �5�

This pair structure factor diverges linearly with N when long-
range order is achieved. Finally, in the absence of any order,
the system is expected to be a semimetal at half filling due to
the peculiar nature of the Fermi surface �no gap but a van-
ishing density of states at the Fermi level�. To distinguish
between metallic, semimetallic, or gapped �solid or super-
fluid� states, we calculate the spectral function A��� which
essentially reflects the one-particle density of states. To ob-
tain this quantity, we first calculate the �imaginary� time-
displaced on-site Green’s function G���=�i�f i���f i

†�0�� /N
and then extract A��� by inverting the following Laplace
transform:

G��� =� d�
e−��

e−	� + 1
A���

using the analytic continuation procedure of Sandvik26 in
which the spectral function is parameterized as N � functions

on a uniform grid of frequencies �l. The amplitudes Al of the
� functions are sampled from a probability distribution
p�A��exp�−�2 /�+�S�. Here �2 is the deviation of the G���
computed from A��� from the values G̃��� produced by the
QMC simulation, S is the entropy, and � is chosen to have an
optimal value given by Bayesian logic. An annealing proce-
dure is used starting from large �, which is then slowly
reduced.

II. HONEYCOMB LATTICE AT HALF FILLING

At half filling, the system can be mapped onto the
FRHM.27–30 Defining a hole creation operator hi↓

† for the
down spin through

�− 1�ihi↓
† = f i↓, �6�

the kinetic term is left unchanged in the spin-down holes
representation. The number operator ni↓ is accordingly trans-
formed into 1−ni↓

h , where ni↓
h =hi↓

† hi↓ is the number operator
for holes and up to a redefinition of the chemical potential �,
the sign of the interaction term is reversed. The FRHM has
SU�2� spin-rotation symmetry at half filling, which translates
into the SU�2� pseudospin symmetry of FAHM.31 Hence the
spin-spin correlations are the same along the three coordinate
axes,

��i
x� j

x� = ��i
y� j

y� = ��i
z� j

z� , �7�

where x and y are the in-plane axes and z the axis orthogonal
to the lattice plane. More specifically,

�i
x = f i↑

† hi↓ + hi↓
† f i↑,

�i
y = i�hi↓

† f i↑ − f i↑
† hi↓� ,

�i
z = ni↑ − ni↓

h . �8�

At large interaction, the FRHM is known to be equivalent to
a Heisenberg model and it develops a long-range antiferro-
magnetic order on the honeycomb lattice at zero
temperature.7 The correlation functions in Eq. �7� then show
oscillations from site to site. Translated into the attractive
model language, these functions become19,32

��i
z� j

z� = �ninj − ni − nj − 1� , �9�

��i
x� j

x + �i
y� j

y� = 2�− 1�i+j��i
†� j + �i� j

†� . �10�

The spin antiferromagnetic correlations along the z axis in
the FRHM are then reproduced in the density-density corre-
lations Dij of the FAHM, which develops a density wave
with alternating occupied and empty sites. The spin correla-
tions in the xy lattice plane translate into long-range order for
the Green’s function Gij

p and phase coherence of a Bose-
Einstein condensate. The antiferromagnetic phase of the
FRHM is thus mapped onto a peculiar phase for the FAHM
since it exhibits at the same time phase coherence and den-
sity wave orders. In the following we will denote this phase
as the density-wave-superfluid �DW-SF� phase. Moreover it
is easy to show from Eqs. �9� and �10� that 2Ps=Sdw as is
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numerically checked in Table I. As the order parameter is
here of dimension 3 and the lattice is of dimension 2, we do
not expect any transition to an ordered phase at finite
temperature.33

Paiva et al.7 have studied the ground state of FRHM on a
honeycomb lattice a few years ago. They found a QPT from
an antiferromagnetic phase at large coupling to a metallic
phase at low coupling, the critical coupling strength being
bounded by 4�Uc / t�5. We use finite-size scaling and
larger system sizes L to improve the numerical accuracy and
narrow down the region of this QPT. Spin wave theory ap-
plied to Heisenberg models implies that the structure and
pair structure factors at T=0 scale with the number of lattice
sites N=2L2 like7,17,34,35

2Ps�N� = Sdw�N� 
 aN + b�N + c ,

where a ,b ,c are U-dependent non-negative constants. In the
disordered phase Sdw�N� is expected to reach a constant finite
value as N goes to infinity, meaning that the coefficients a
and b should then vanish. In the ordered phase, a should be
strictly positive so that both Ps and Sdw diverge linearly with
N signaling the emergence of density and phase coherence
orders. Using system sizes as large as L=15 and using the
vanishing of coefficient a to define the onset for the DW-SF
phase, we have been able to infer the critical interaction
strength Uc to be in the range 5.0�Uc / t�5.1 �Fig. 3�.

In the study by Paiva et al., the metallic phase appearing
at low U was not studied in detail. In particular, the question
of the metallic or semimetallic nature of the system was not
addressed. Calculating the spectral function A��� for differ-
ent values of U �Fig. 4�, we find that the system is always a
semimetal when it is not in an ordered phase. The density of
states drops around the Fermi level �located at �=0� for
U / t�5 but without forming a gap. On the contrary, we ob-
serve a tiny metallic peak at the Fermi level. This peak is a
finite-size effect due to the four states per spin located ex-
actly at the Fermi level �in the noninteracting limit� when the
system size is a multiple of three. On the contrary, using
sizes that are not multiples of three, we do observe a small
gap. Both this gap and the peak are finite-size effects that are
reduced when we increase the size of the system. We then
conclude that A��� is zero �or very small� only at the Fermi
level but without the formation of a gap. This is the signature
of a semimetallic phase. Indeed, a metal would be signaled

by a persistent peak at the Fermi level �or at least a large
nonzero density�. The transition to the DW-SF ordered phase
is signaled by the opening of the gap in A��� for U / t�5,
which corresponds to the value for the transition previously
obtained by the finite-size scaling analysis of Sdw.

III. DOPING AWAY FROM HALF FILLING

At zero temperature, when the FAHM is doped away from
the DW-SF ordered phase obtained at half filling when U
�Uc, say by increasing � from 1, we expect the density
order to disappear and the phase coherence order to persist.
However, one also expects phase coherence to establish
throughout the sample when the system is doped away from
the semimetallic phase obtained at half filling when U�Uc.
Indeed in this case the Fermi surface is no longer limited to
isolated points and BCS pairing becomes possible. There-
fore, we expect the phase coherence order to establish at zero
temperature for all values of the interaction U as soon as �
�1. With an order parameter of dimension 2 �a phase gradi-
ent pictured as a vector lying in the xy plane�, the system
undergoes a Berezinsky-Kosterlitz-Thouless �BKT� �Refs.
36–38� transition at some critical temperature Tc, leading to

TABLE I. Comparison of Ps and Sdw /2 for L=12, 	t=20, U / t
=3, and different values of � / t. At half filling, those quantities are
equal within statistical error bars as a consequence of the SU�2�
pseudospin symmetry of the FAHM. Sdw and Ps are small because
U�Uc and the system is in its semimetallic phase. This symmetry
is broken when ��0 and this is confirmed by the numerical data
showing that the two quantities are indeed unequal. Sdw remains
small but Ps is large due to the presence of quasilong-range order.

� / t � Sdw /2 Ps

0 1.0 1.125�0.005 1.127�0.001

0.9202 1.5 0.3356�0.0004 10.5�0.1

0 0.05 0.1
0

0.05

0.1

0.15

U/t = 1.0
U/t = 2.0
U/t = 3.0
U/t = 4.0
U/t = 4.8
U/t = 4.9
U/t = 5.0
U/t = 5.1
U/t = 6.0

S
d
w
/N

N−1
2

ρ = 1, βt = 10

FIG. 3. �Color online� Scaling of the density wave structure
factor Sdw with lattice size L at half filling �the total number of
lattice sites is N=2L2�. We have checked that for few coupling
strengths and lattice sizes, the results remain �almost� unchanged
for 	t=16. Therefore, the value 	t=10 is sufficiently large to dis-
tinguish the semimetallic and the superfluid phases. The dashed
lines are a fit of the form Sdw /N=a+b /�N+c /N. Close to or above
the transition �U / t�5.0�, the coefficients a and b take on finite
positive values implying that both density and phase coherence or-
ders emerge in the thermodynamic limit N→
. As it is seen, Sdw /N
then essentially scales linearly with 1 /�N and achieves the finite
value a when N→
. Below the transition �U / t�5�, the coeffi-
cients a and b vanish, meaning that the system reaches its disor-
dered phase in the thermodynamic limit N→
. As it is seen, Sdw /N
then essentially scales as 1 /N and goes to zero when N→
. The
QPT point is thus signaled by the vanishing of the coefficient a,
from which we can infer that the critical interaction strength lie in
the range 5.0�Uc / t�5.1.
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a quasilong-range phase order, i.e., a superfluid phase, at T
�Tc before the appearance of the Bose-Einstein condensate
at T=0.

According to mean-field theory,15 a superconductor exists
anywhere away from half filling, albeit the superconducting
gap function or, equivalently, ��i

†�, decays exponentially
with respect to 1 / �U��−1� in the BCS regime. In their pre-
vious study, Su et al.16 compared DQMC results to random-
phase approximation �RPA� calculations and showed that
there is a so-called BCS-BEC crossover extending from
small to large values of the interaction when the system is off
half filling. When U is increased, the ground state of the
system evolves continuously from a BCS state �where fermi-
ons with opposite spins form loose pairs of plane waves with
opposite momenta� to a BEC of bosonic molecules �where
fermions with opposite spin form tightly bound pairs�. We
have extended their study to larger lattices �up to L=15� and
lower temperatures �up to 	t=20� and we have also analyzed
new observables.

We first studied the behavior of the pair and density wave
structure factors, Ps and Sdw, away from half filling. To do
this, we first need to obtain the low-temperature limit of
these quantities by decreasing the temperature until we ob-
serve a plateau signaling that we have reached the T=0 limit
�Fig. 5�. To extract the plateau value, we have used the three-
parameter function

F�	t� =
u

1 + v exp�− w	t�
�11�

to fit our numerical data Ps�	t�. The plateau value lim	→
 Ps
is then approximated by u. We have also observed in our

numerical simulations that this plateau is reached at lower
and lower temperatures as we approach half filling. This is
because the BKT critical temperature Tc goes to zero like
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FIG. 4. �Color online� Spectral function A��� at half filling ��=1� for different values of the interaction strength U. The lattice size is
L=9 and 	t=10. The Fermi level is located at �=0. For U / t�5, the system is a semimetal as witnessed by the dip around the Fermi level.
The nonvanishing density of states at the Fermi level is due to finite-size effects �see Fig. 2�. For U / t�5, a gap opens as the system enters
the DW-SF ordered phase. The small peaks situated at ���
2.5t are also a result of finite-size effects.
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U/t = 3, ρ = 1.10

FIG. 5. �Color online� Evolution of the pair structure factor Ps

as a function of the inverse temperature 	t for several lattice sizes
L. The interaction strength has been fixed at U=3t and the total
average fermionic density at �=1.1. The dashed lines are fits using
the three-parameter function F�	t�, Eq. �11�. A plateau is reached
when 	t is much greater than the energy gap induced by finite-size
effects between the ground state and the first excited state. As can
be seen, the plateau is reached at larger 	t when the lattice size
increases. It is also reached at larger 	t when �→1 �not shown�.
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1 / �ln ��� as ��= �1−��→0 �Ref. 17� and lower temperatures
are required to achieve phase coherence.

Figure 6 shows how Ps and Sdw scale with the number of
lattice sites N. For each chosen lattice size L and fermionic
density �, we have run our simulations for the lowest tem-
perature that could be numerically achieved. The temperature
range that we have been able to explore was up to 	t=20. As
expected Sdw always goes to zero and Ps always extrapolates
to a nonzero value. We can then conclude, from direct mea-
surement, that the BEC at zero temperature always appears
as soon as the system is doped away from half filling. Even
with the smallest doping that we have been studying ��
=1.05, 5% doping�, we have observed a clear persistence of
the phase coherence ordering in the large size limit.

To observe the molecule formation along the BCS-BEC
crossover, we have studied the density of on-site pairs

�p =
1

N
�

i

�ni↑ni↓� . �12�

In the noninteracting limit �U / t→0�, spin-up and spin-down
particles are uncorrelated. Hence �ni↑ni↓�= �ni↑��ni↓�=�↑�↓.
Since we consider here equal spin populations �↑=�↓=� /2,
we find �p=�↑

2. In the molecular limit �U / t→
�, fermions
can only exist in pair at a site. Hence �ni↑ni↓�= �ni↑�=�↑ and
�p=�↑. In Fig. 7, we have plotted the rescaled density of
on-site pairs,

�̃p =
�p − �↑

2

�↑ − �↑
2 . �13�

as a function of U / t. The crossover between a regime of
loosely bound pairs and a regime of more tightly bound pairs

�molecules� is nicely evidenced by the smooth evolution of
this rescaled quantity between the two limits �̃p=0 and �̃p
=1 as the interaction is increased. For the intermediate val-
ues of the interactions used in our simulation, we see that the
pairs are not tightly bound yet. The �̃p=1 limit is obtained
only for extremely large values of U / t.

The second evidence for molecule formation along the
BEC-BCS crossover comes from the evolution of the spec-
tral function A��� when the interaction strength U �Fig. 8�
and the temperature T �Fig. 9� are varied. At large interac-
tions �U�4�, a clear gap is found at the Fermi level �=0
provided the temperature is low enough, showing the forma-
tion of molecules. On the contrary, when the interaction is
weaker �U�3�, the gap does not open within the same range
of temperatures. However, we observe that the value of A���
at the Fermi level �=0 decreases when the temperature is
lowered �Fig. 9�. We interpret this behavior as the precursor
to the formation of a small BCS gap at very low tempera-
tures. This dip in A��� at the Fermi level is different from the
one due to the vanishing of the noninteracting density of
states at the Dirac points that was observed at half filling in
the semimetal case. The Dirac dip is still present in the U
�3 cases for ��0 �Fig. 8�, showing that interaction
strength is not large enough to strongly modify the structure
of the Fermi sea, except very close to the Fermi level. This is
characteristic of the BCS case. On the other hand, the Dirac
dip disappears at strong interactions �Fig. 8, bottom�, show-
ing now that the original Fermi sea structure has been com-
pletely modified by interactions.

A nice feature of the strongly interacting regime is the
existence of two very different energy scales. One corre-
sponds to the formation of bound pairs �molecules� and is
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FIG. 6. �Color online� Evolution of the pair and density wave
structure factors Ps and Sdw as a function of the number of lattice
sites N for different total average fermionic densities �. The inter-
action strength has been fixed at U=3t. Full symbols have been
obtained for inverse temperatures up to 	t=20 �see text�. Open
symbols for Ps are the plateau values at T=0 as extracted from the
fits in Fig. 5. The density wave structure factors Sdw always go to
zero as the system size L=�N /2 tends to infinity whereas the phase
coherence ordering signal Ps never vanishes. The dashed lines are
guides to the eyes. For the same parameters at half filling the sys-
tem would be semimetallic and Sdw and Ps would both vanish.
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FIG. 7. �Color online� Evolution of the rescaled density �̃p of
on-site pairs, Eq. �13�, as a function of the interaction strength U / t
for two different total average fermionic densities �. The system
size has been fixed at L=9 and the inverse temperature is 	t=10. In
the noninteracting limit �U / t→0�, spin-up and spin-down particles
are uncorrelated, hence �ni↑ni↓�= �ni↑��ni↓�=�↑�↓=�↑

2 for equal spin
populations. In this case �̃p=0. In the molecular limit �U / t→
�,
fermions can only exist in pair at a site, hence �ni↑ni↓�= �ni↑�=�↑. In
this case �̃p=1.
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typically on the order of U itself. The second corresponds to
the emergence of phase coherence between these pairs and is
of the order of the hopping parameter for pairs, typically
t2 /U.39 These two-energy scales are clearly identified by
comparing the evolution of Ps and �p when the temperature
is varied, see Fig. 10. We thus can conclude that, even if the
pairs are not tightly bound at the intermediate values of U / t
we used �as it shown in Fig. 10�, we clearly observe the
formation of pairs before the emergence of phase coherence,
which is expected in the BEC regime. To investigate this
phenomenon further, we show in Fig. 11 the pair Green’s
function in Eq. �4� as a function of distance for different

temperatures. There is a range of temperatures �0.1�	t
�5� where the pair Green’s function is clearly decreasing
exponentially with distance �up to some boundary effects�.
This means that no phase coherence is achieved and the sys-
tem is in a disordered regime. In other words, the corre-
sponding temperatures are above the BKT transition tem-
perature Tc. For this same temperature range, �p has already
reached its zero-temperature limit �Fig. 10�. This is a clear
evidence for the existence of preformed pairs which will
eventually develop quasilong-range phase coherence at a
much lower temperature. For temperatures T�Tc, the
Green’s function should decay algebraically with distance
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FIG. 8. �Color online� Evolution of the spectral function A��� as a function of the interaction strength U at density �=1.2, inverse
temperature 	t=12, and lattice size L=9. When U=0, the chemical potential is numerically found to be � / t=0.8768, locating the Dirac
points in the residual gap �due to finite-size effects and temperature rounding� around � / t=−1. The fact that the density of states vanishes
linearly with � around � / t=−1 also supports this identification of the location of the Dirac points. As U is increased, a dip develops in the
spectral function at the Fermi level �located at �=0� and the BCS-BEC gap eventually opens while the Dirac points are gradually destroyed.
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FIG. 9. �Color online� Evolution of A��� as a function of inverse temperature 	t at �=1.2, interaction strength U=2t, and lattice size
L=9. As the temperature is lowered, a dip develops in the spectral function at the Fermi level located at �=0. Eventually a gap opens when
the temperature is low enough �not shown�. The gap opening at the Fermi level is obtained even at weak interactions, a situation charac-
teristic of the existence of a small BCS gap.

LEE et al. PHYSICAL REVIEW B 80, 245118 �2009�

245118-8



with an exponent �=T / �4Tc�.17 For 	t�10, the pair Green’s
function behavior is consistent with a power-law decay but it
is difficult to extract the corresponding exponent due to
finite-size effects.

IV. CONCLUSION

We have studied the Hubbard model on a honeycomb
lattice with attractive interactions. At half filling, building up
upon previous existing studies, we have used the mapping
onto the FRHM to show that there is a quantum phase tran-
sition at T=0 between a disordered phase and a DW-SF
phase exhibiting crystalline as well as superfluid orders. The
critical interaction strength at which this QPT takes place is
accurately bounded by 5.0�Uc / t�5.1. We have also shown
that before the transition, the system is semimetallic and that
the interactions do not markedly change the nature of this
phase. Away from half filling, within our numerical accuracy,
the system seems to become superfluid, even for arbitrary
small values of the doping. We have elucidated the presence
of the BCS-BEC crossover by looking at several quantities,
especially the one-particle density of states. We have clearly
evidenced, for strong enough interactions, the existence of
two different energy scales, one for the formation of the pairs
and one for the emergence of phase coherence �the BKT
transition�, which is typical of the strongly interacting re-
gime.

For weak interactions, both at and away from half filling,
we have observed that the spectral function A��� is qualita-
tively the same as in the noninteracting case. Only the states
close to the Fermi level are affected by those weak interac-
tions. As there are no available states in the half-filled case
close to the Fermi level, the interactions hardly play a role
and the system remains a semimetal �at half filling� up to
U=5t. It is only when the interactions are strong enough to
destabilize the Fermi sea and form tightly bound pairs that
the system enters a different phase. In this case, the descrip-
tion in terms of individual fermions and plane-wave states is
no longer relevant.
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FIG. 11. �Color online� Evolution of the pair Green’s function as a function of distance for different temperatures. The total average
fermionic density is set at �=1.5, the interaction strength at U=3t, and the lattice size is L=12. The vertical axes are plotted in logarithmic
scale while the horizontal axes are plotted with linear �top� and logarithmic �bottom� scales. For large site separation �i− j�, we observe a
transition from an exponential decay �linear behavior in the log-linear plot� at high temperature to a weak algebraic decay �linear behavior
in the log-log plot� at low temperature. This is the signature of the BKT transition where the system leaves the disordered phase to enter a
phase with quasilong-range order as the temperature is lowered. However, due to limited system size, the weak algebraic decay of the pair
Green’s function is difficult to infer unambiguously.
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FIG. 10. �Color online� Evolution of the pair structure factor Ps

�circles� and the rescaled density of on-site pairs �̃p �squares� as a
function of the inverse temperature 	t at interaction strength U
=3t. The total average fermionic density is set at �=1.5 and the
system size is L=12. Two different energy scales are clearly iden-
tified as Ps, signaling the emergence of phase coherence, saturates
at 	t
U / t whereas �̃p, signaling the molecule formation, saturates
at 	t
 t /U. We recover here �in dimensionless units� the two-
energy scales t2 /U and U, typical of the emergence of phase coher-
ence and of the formation of tightly bound pairs.
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We further observe that the BCS and the semimetal re-
gimes are two phases sharing some common features. In-
deed, in both phases, interactions are not strong enough to-
substantially modify the Fermi sea structure except around
the Fermi level. This is reflected in the fact that the Dirac dip
in A��� is always clearly visible in these cases. By the same
token, the molecular superfluid phase �BEC� and the DW-SF
have in common that the description in term of individual
fermions is meaningless. Indeed, for both phases, the fermi-
onic excitations are gapped and the Dirac dip in A��� has
disappeared. Close to half filling, we then expect to observe
the BCS-BEC crossover to happen for interaction strengths
close to the value of the QPT at half filling, i.e., U
5t. The
opening of a clear gap for U / t=4–5 in Fig. 8 supports this
interpretation.
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